®

Check for
updates

Understanding the Security Risks
of Docker Hub

Peiyu Liu', Shouling Ji'® | Lirong Fu!, Kangjie Lu?, Xuhong Zhang?,
Wei-Han Lee?, Tao Lu!, Wenzhi Chen'®™) | and Raheem Beyah?*

! Zhejiang University, Hangzhou, China
{liupeiyu,sji, fulirong007,lutao,chenwz}@zju.edu.cn,
xuhongnever@gmail . com
2 University of Minnesota Twin Cities, Minneapolis, USA
kjlu@umn.edu
3 IBM Research, Yorktown Heights, USA
wei-han.leel@ibm.com
4 Georgia Institute of Technology, Atlanta, USA
rbeyah@ece.gatech.edu

Abstract. Docker has become increasingly popular because it provides
efficient containers that are directly run by the host kernel. Docker Hub
is one of the most popular Docker image repositories. Millions of images
have been downloaded from Docker Hub billions of times. However, in
the past several years, a number of high-profile attacks that exploit this
key channel of image distribution have been reported. It is still unclear
what security risks the new ecosystem brings. In this paper, we reveal,
characterize, and understand the security issues with Docker Hub by per-
forming the first large-scale analysis. First, we uncover multiple security-
critical aspects of Docker images with an empirical but comprehensive
analysis, covering sensitive parameters in run-commands, the executed
programs in Docker images, and vulnerabilities in contained software.
Second, we conduct a large-scale and in-depth security analysis against
Docker images. We collect 2,227,244 Docker images and the associated
meta-information from Docker Hub. This dataset enables us to discover
many insightful findings. (1) run-commands with sensitive parameters
expose disastrous harm to users and the host, such as the leakage of host
files and display, and denial-of-service attacks to the host. (2) We uncover
42 malicious images that can cause attacks such as remote code execu-
tion and malicious cryptomining. (3) Vulnerability patching of software
in Docker images is significantly delayed or even ignored. We believe that
our measurement and analysis serves as an important first-step study on
the security issues with Docker Hub, which calls for future efforts on the
protection of the new Docker ecosystem.

1 Introduction

Docker has become more and more popular because it automates the deployment
of applications inside containers by launching Docker images. Docker Hub, one

© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12308, pp. 257-276, 2020.
https://doi.org/10.1007/978-3-030-58951-6_13

258 P. Liu et al.

of the most popular Docker image registries, provides a centralized market for
users to obtain Docker images released by developers [4,31,35]. Docker has been
widely used in many security-critical tasks. For instance, Solita uses Docker to
handle the various applications and systems associated with their management
of the Finnish National Railway Service [9]. Amazon ECS allows users to easily
run applications on a managed cluster of Amazon EC2 instances in Docker con-
tainers [1]. In addition, millions of Docker images have been downloaded from
Docker Hub for billion times by users for data management, website deployment,
and other personal or business tasks.

The popularity of Docker Hub however brings many high-profile attacks. For
instance, on June 13, 2018, a research institute reported that seventeen malicious
Docker images on Docker Hub earned cryptomining criminals $90,000 in 30
days [8]. These images have been downloaded collectively for 5 million times
in the past year. The report also explained the danger of utilizing unchecked
images on Docker Hub: “For ordinary users, just pulling a Docker image from
the Docker Hub is like pulling arbitrary binary data from somewhere, executing
it, and hoping for the best without really knowing what’s in it”. Therefore, a
comprehensive and in-depth security study of Docker Hub is demanded to help
users understand the potential security risks.

The study of Docker Hub differs from the ones of other ecosystems such as
App store and virtual-machine image repositories [15,20,28,30,32] in the fol-
lowing aspects. (1) Docker images are started through run-commands. They are
executed through special instructions called run-commands which are security-
critical to the created containers. (2) The structures of Docker images are more
complex than traditional applications. A single image may contain a large num-
ber of programs, environment variables, and configuration files; it is hard for a
traditional analysis to scale to scan all images. (3) Docker images can bring new
risks to not only the container itself but also the host because the lightweight
virtualization technology leveraged in containers allows the sharing of the kernel.
(4) The vulnerability-patching process of Docker images is significantly delayed
because the programs are decoupled from the mainstream ones, and developers
are less incentivized to update programs in Docker images. All the aforemen-
tioned differences require a new study for the security of Docker Hub.

The unique characteristics of Docker Hub call for an urgent study of its new
security issues. However, a comprehensive and in-depth study entails overcoming
multiple challenges. (1) It is not clear how to analyze the security impacts of
various categories of information on Docker Hub. For example, run-commands
are security-critical to Docker containers while a method for measuring the secu-
rity impacts of run-commands is still missing. This requires significant empirical
analysis and manual effort. (2) Obtaining and analyzing Docker images and the
associated meta-information in a scalable manner is non-trivial. For example, it
is difficult to perform a uniform analysis on Docker images, since a Docker image
contains a large number of files in a broad range of types (e.g., ELF, JAR, and
Shell Scripts).

Understanding the Security Risks of Docker Hub 259

In this paper, we perform the first security analysis against Docker Hub.
Based on the unique characteristics of Docker Hub, we first empirically iden-
tify three major security risks, namely sensitive parameters in run-commands,
malicious docker images, and unpatched vulnerabilities. We then conduct a large-
scale and in-depth study against the three security risks. (1) Run-commands. We
carefully analyze the parameters in run-commands to discover sensitive parame-
ters that may pose threats to users. Moreover, we develop multiple new attacks
(e.g., obtaining user files in the host and the host display) in Docker images
to demonstrate the security risks of sensitive parameters in practice. We also
conduct a user study to show that users, in general, are unaware of the risks
from sensitive parameters. (2) Malicious executed programs. To study malicious
Docker images efficiently, we narrow down our analysis to only the executed pro-
grams. We implement a framework to automatically locate, collect, and analyze
executed programs. By leveraging this framework, we scan more than 20,000
Docker images to discover malicious executed programs. (3) CVE-assigned vul-
nerabilities. We provide a definition of the life cycle of vulnerability in Docker
images and manually analyze the length of the time window of vulnerabilities in
Docker images. To enable the analysis, we collect a large number of images and
their meta-information from Docker Hub. Our collected dataset contains all the
public information of 2,227,244 images from 975,858 repositories on Docker Hub.

The comprehensive analysis enables us to have multiple insightful findings.
First of all, we find that the run-commands with sensitive parameters presented
in Docker Hub may introduce serious security risks, including the suffering of
denial-of-service attack and the leakage of user files in the host and the host dis-
play. Moreover, we observe that each recommended run-command in the repos-
itory description contains one sensitive parameter on average. Unfortunately,
our user study reveals that users are not aware of the threats from sensitive
parameters—they will directly execute run-commands specified by developers
without checking and understanding them. Second, our analysis shows that mali-
cious images are hidden among common ones on Docker Hub. Using our analy-
sis framework, we have discovered 42 malicious images. The malicious behaviors
include remote execution control and malicious cryptomining. Finally, we observe
that the vulnerability patching for the software in Docker images is significantly
delayed or even ignored. In particular, almost all the images on Docker Hub
suffer from unpatched software vulnerabilities. In extreme cases, a single image
may contain up to 7,500 vulnerabilities. In addition, vulnerabilities in the soft-
ware of Docker images tend to have a much longer life cycle due to the lack of
image updates. More critically, we find that the in-Docker vulnerabilities can
even cause harms to the host machine through Docker, e.g., crashing the host.

Our analysis and findings reveal that the Docker ecosystem brings new secu-
rity threats to users, contained software, and the host machine as well. To mit-
igate these threats, we suggest multiple potential solutions (see Sect.7) such
as automatically fixing vulnerabilities in images, detecting malicious images in
Docker Hub, etc. We have reported all the security issues uncovered in this paper
to Docker Hub and they are investigating to confirm these issues.

260 P. Liu et al.

In summary, our work makes the following contributions.

— We empirically identify three major sources of security risks in Docker Hub,
namely sensitive parameters in run-commands, malicious docker images, and
unpatched vulnerabilities. We then conduct a large-scale and in-depth study
against the three security risks based on all the public information of 2,227,244
images collected from 975,858 repositories on Docker Hub. We have open-
sourced this dataset to support reproducibility and motivate future work in
Docker security analysis [13].

— We uncover many new security risks on Docker Hub. 1) Sensitive parameters
in run-commands can expose disastrous harm to users and the host, such as
the leakage of host files and display, and denial-of-service attacks to the host.
2) We uncover 42 malicious images that can cause attacks such as remote code
execution and malicious cryptomining. 3) Vulnerability patching of software
in Docker images is significantly delayed by 422 days on average.

— QOur analysis calls for attention to the security threats posed by the new
Docker ecosystem. The threats should be addressed collectively by Docker
image registry platforms, image developers, users, and researchers. Moreover,
we have reported all the security issues uncovered in this paper to Docker
Hub and suggest multiple mitigation approaches.

2 Background and Threat Model

In this section, we provide a brief introduction of Docker Hub and its critical
risk resources. Then, we describe the threat model of our security analysis.

2.1 Critical Risk Sources in Docker Hub

Docker Hub is the world’s largest registry of container images [5]. Images on
Docker Hub are organized into repositories, which can be divided into official
repositories and community repositories. For each image in a Docker Hub repos-
itory, besides the image itself, meta-information is also available to the users,
such as repository description and history, Dockerfile [5], the number of stars
and pulls of each repository, and developer information. To perform a risk anal-
ysis against Docker Hub, we first need to identify potential risk sources. We
empirically identify risk sources based on which major components control the
behaviors of a Docker image.

Run-Command and Sensitive Parameter. In order to run a Docker
container, users need to execute an instruction called run-command. A run-
command mainly specifies the image and parameters used to start a container.
For instance, a developer may specify a recommended run-command on Docker
Hub, such as “Start container with: docker run --name flaviostutz-opencv?2 --
privileged -p 2222:22 flaviostutz/opencv-z86”. For users who have never used
the image before, the recommended run-commands can be helpful for deploy-
ing their containers. However, it is unclear to what extent users should trust

Understanding the Security Risks of Docker Hub 261

the run-commands posted by the developers, who can publish run-commands
without any obstruction because Docker Hub does not screen these content. In
addition, a run-command may contain a variety of parameters that can affect the
behavior of the container [6]. Some of these parameters are sensitive since they
control the degree of isolation of networks, storage, or other underlying subsys-
tems between a container and its host machine or other containers. For example,
when users run an image with the parameter of --privileged, the container will
get the root access to the host. Clearly, the misuse of run-commands containing
sensitive parameters may lead to disastrous consequences on the container as
well as the host (see Sect.4).

Executed Programs. Previous work already shows that a large amount of
software in Docker images is redundant [31]. Hence, when analyzing the content
of a Docker image, we should focus on the executed programs that are bound up
with the security of the image. Based on our empirical analysis, we find that the
entry-file (an executable file in Docker images, specified by a configure file or run-
commands) is always the first software triggered when a container starts. Besides,
the entry-file can automatically trigger other files during execution. Therefore,
the executed programs (the entry-file and subsequently triggered files) are key
factors that directly affect the safety of a container. Furthermore, in general,
it is less common for users to run software other than executed programs [4].
Therefore, in the current study, we choose to analyze executed programs to check
malicious images for measurement purposes.

Vulnerabilities in Contained Software. A Docker image is composed of
a large number of software packages, vulnerabilities in these software pack-
ages bring critical security risks for the following reasons. Vulnerabilities can
be exploited by attackers to cause security impacts such as data leakage. Addi-
tionally, Docker software programs are often duplicated from original ones, and
Docker developers lack incentives to timely fix vulnerabilities in the duplicated
programs. As a result, the security risks with vulnerabilities are elevated in
Docker because vulnerabilities take a much longer time to be fixed in Docker
images.

2.2 Threat Model @Norma.

L Image Malicious
As shown in Fig. 1, there are two @""a"°‘°”s Command
. .) Image Sensitive
different categories of threats Attacker\ @vmnerab,e Command
that Docker Hub may face. (1) 9 ge
Vulnerable images. Developers \ %\
upload their images and the ‘ DockerHub "\ E
associated meta-information to *‘
Docker Hub, which may con- 5 g ii

tain vulnerabilities. If users peveloper Attacker
download and run the vulner-

able images, they are likely to Fig. 1. The threat model of our security analysis.

User

262 P. Liu et al.

become the targets of attackers who exploit vulnerabilities. Additionally, the run-
commands announced by developers may contain sensitive parameters, which
may bring more security concerns such as giving containers root access to the
host (see Sect.4). (2) Malicious images. Attackers may upload their malicious
images to Docker Hub, and sometimes together with malicious run-commands
in the description of their images. Due to the weak surveillance of Docker Hub,
malicious images and metadata can easily hide themselves among benign ones
(see Sect.5) [8]. Once users download a malicious image and run it, they may
suffer from attacks such as cryptomining. On the other hand, malicious run-
commands can also lead to attacks such as host file leakage. In this study, since
it is mainly for measurement purposes, we assume that attackers are not aware
of the techniques we employ to analyze Docker images. Otherwise, they can hide
the malicious code by bypassing the analysis, leading to an arms race.

3 Analysis Framework and Data Collection

In this section, we provide an overview of our analysis framework. Then we
introduce our methods of data collection and provide a summary for the collected
dataset.

3.1 Overview of Our Analysis Framework

% Repository

In our security analy-
sis, we focus on the
key risk sources (run-

1
1
1 . .
Docker Hub |Name : commands, sensitive
l Description 1 parameters, entry-files
_—w/~ (@ _|Developer <9 ' Data and vulnerabilities) in
#1787 | Information ’ ICollection
/ . Docker Hub, as uncov-
Crawler Meta Information Downloader Images 1 ered in Sect.2.1. Our
— — : analysis framework for
un-Commana an . . .
® Sensitive Parameter 'At::'?l;’l(:tles the StU-dy is outlined in
=== . Executed Program :Extraction Fig.2. We first collect

Extractor ~ Critical Sources . a large-scale dataset,
1 including the images
& : security and all the public infor-
oyl8, Analysis mation of a Docker
o image such as image
name, repository descrip-
tion, and developer infor-
mation, from Docker
Hub (D), @). After data
collection, the extractor utilizes a set of customized tools to obtain several
previously-ignored essentials such as sensitive parameters and executed pro-
grams from the raw data (3)). After obtaining the set of essentials, we perform

A
1
1
1
1
1
1
1

1
______ / Analyzer Result |

Fig. 2. The framework of our analysis.

Understanding the Security Risks of Docker Hub 263

systematic security analysis on Docker Hub from various aspects by leverag-
ing Anchore (2], VirusTotal intelligence API [11], and a variety of customized

tools (@).

3.2 Data Collection and Extraction

The abundant information (described in Sect.2.1) of Docker images on Docker
Hub is important in understanding the security of Docker Hub. However, most
of this information has never been collected before, leading to incomprehensive
analysis. Hence, we implement a customized web crawler that leverages Docker
Hub API described in [3] to collect the Docker images and their associated meta-
information from Docker Hub. All the information we obtain from Docker Hub
is publicly available to anyone and it is legal to perform analysis on this dataset.

Summary of Our Col-

lected Data. Our dataset, Table 1. Data collected in our work.
as shown in Table 1, con- No. repositories|No. images|No. developers
tains all the public infor- Official 147 1,384 1
mation of the tOp 975,858 Community|975,711 2,225,860 [349,860
Total 975,858 2,227,244 349,861

repositories on Docker Hub.
For each repository, the
dataset contains the image files and the meta-information described in Sect. 2.1.
Furthermore, to support in-depth analysis, we further extract the following data
and code from the collected raw data.

Collecting Run-Command and Sensitive Parameter. As discussed in
Sect. 2.1, run-commands and sensitive parameters can make a great impact on
the behavior of a container. In order to perform security analysis on them, we
collect run-commands by extracting text contents that start with ‘docker run’’
from the repository descriptions and further obtain sensitive parameters from
the run-commands through string matching.

Collecting Executed Program. As discussed in Sect. 2.1, the executed pro-
gram is a key factor that directly affects the security of a container. Therefore,
we develop an automatic parser to locate and extract the executed program. For
each image, our parser first locates the entry-file according to the Dockerfile or
the manifests file. Once obtaining the entry-file, the parser scans the entry-file
to locate the files triggered by entry-file. Then, the parser scans the triggered file
iteratively to extract all executed programs in the image. For now, our parser can
analyze ELF files and shell scripts by leveraging strings [10] and a customized
script interpreter, respectively.

4 Sensitive Parameters

In this section, we (1) identify sensitive parameters; (2) investigate the user
awareness of sensitive parameters; (3) propose novel attacks exploiting sensitive
parameters; (4) study the distribution of sensitive parameters on Docker Hub.

264 P. Liu et al.

4.1 Identifying Sensitive Parameters

As described in Sect. 2.1, the parameters in run-commands can affect the behav-
iors of containers. However, among the over 100 parameters provided by Docker,
it is unknown which parameters can cause security consequences. Therefore,
we first obtain all the parameters and their corresponding descriptions from
the documentation provided by Docker. Then, we manually identify the sensi-
tive parameters by examining if they satisfy any of the following four proposed
criteria: (1) Violate the isolation of file systems; (2) Violate the isolation of net-
working; (3) Break the separation of processes; (4) Escalate runtime privileges.

Next, we explain why we choose these criteria. (1) From the security perspec-
tive, each Docker container maintains its own file system isolated from the host
file system. If this isolation is broken, a container can gain access to files on the
host, which may lead to the leakage of host data. (2) By default, each Docker
container has its own network stack and interfaces. If this isolation is broken, a
container can have access to the host’s network interfaces for sending/receiving
network messages, which, for example, may cause denial of service attacks. (3)
Generally, each Docker container has its own process-tree separated from the
host. If this isolation is broken, a container can see and affect the processes on
the host, which may allow containers to spy the defense mechanism on the host.
(4) Most potentially dangerous Linux capabilities, such as loading kernel mod-
ules, are dropped in Docker containers. If a container obtains these capabilities,
it may affect the host. For example, it is able to execute arbitrary hostile code
on the host.

4.2 User Awareness of Sensitive Parameters

We find that nearly all the default container isolation and restrictions enforced
by Docker can be broken by sensitive parameters in run-commands, such as
--privileged, -v, --pid, and so on. We describe the impact of these sensitive
parameters in Sect.4.3. However, the real security impacts of these sensitive
parameters on the users of Docker Hub in practice is not clear. Therefore, the first
question we aim to answer is “are users aware of the sensitive parameters when
the parameters in run-commands are visible to them?” To answer this question,
we conduct a user study to characterize the behaviors of users of Docker Hub,
which allows us to understand user preferences and the corresponding risks.
Specifically, we survey 106 users including 68 security researchers and 38 soft-
ware engineers from both academia and industry fields. For all the 106 users, 97%
of them only focus on the functionality of images and have never raised doubts
about the descriptions, e.g., the developer identification, the run-commands, on
Docker Hub. It is worth noting that, even for 68 users who have a background on
security research, 95% of them trust the information provided on Docker Hub.
90% of security experts run an image by exactly following the directions provided
by image developers. Only 10% of security experts indicate that they prefer to
figure out what the run-commands would do. Indeed, the study can be biased
due to issues such as the limited number of the investigated users, imbalanced

Understanding the Security Risks of Docker Hub 265

gender and age distribution, and so on. However, our user study reveals that
users, even the ones with security-research experience, do not realize the threats
of sensitive parameters in general. Nearly 90% of users exactly execute run-
commands specified by developers without checking and understanding them.
Hence, we conclude that sensitive parameters are an overlooked risk source for
Docker users. More details of the user study are deferred to Appendix A.1.

4.3 Novel Attacks Exploiting Sensitive Parameters

To demonstrate the security risks of sensitive parameters in practice, we develop
a set of new attacks in Docker images that do not contain any malicious software
packages. Our attacks rely on only run-commands with sensitive parameters
to attack the host. Note that we successfully uploaded these images with our
“malicious” run-commands to Docker Hub without any obstruction, confirming
that Docker Hub does not carefully screen run-commands. However, to avoid
harm to the community, we immediately removed the sensitive parameters in
the run-commands after the uploading, and performed the attacks in our local
lab machines only.
The Leakage of Host Files.) ,
As described in Fig.3, we show lcgétdzi(;ne bl s g sk e g1t
how to leak user files in the host =@ sgit pull
. .. . 4cp —r usr—data .
using sensitive parameters. Specifi- . git add .
cally, --volume or -v is used to mount ¢ cur-date=‘date’ .
7 git commit —m ” $cur_date”

a volume on the host to the con- . git push
tainer. If the operator uses param-
eter, -v src:dest, the container will Fig.3. Code example to implement the
gain access to src which is a volume leakage of host files.
on the host. Exploiting this parame-
ter, attackers can maliciously upload user data saved in the host volume to their
online repository, such as GitHub. It is important to note that this attack can
be user-insensitive, i.e., the attacker can prepare a configure file in the malicious
image to bypass the manual authentication.

Other attacks are delayed to Appendix A.2. Overall, these novel attacks we
proposed in this paper demonstrate that sensitive parameters can expose disas-
trous harm to the container as well as the host.

¢

4.4 Distribution of Sensitive Parameters

Next, we study the distribution of sensitive parameters used in real images on
Docker Hub. We observe that 86,204 (8.8%) repositories contain the recom-
mended run-commands in their descriptions on Docker Hub. Moreover, as shown
in Table?2, there are 81,294 sensitive parameters in these run-commands—on
average, each run-command contains one sensitive parameter. Given the com-
mon usage of sensitive parameters and their critical security impacts, it is urgent
to improve users’ awareness of the potential security risks brought by sensitive
parameters and propose effective vetting mechanisms to detect these risks.

266 P. Liu et al.

Table 2. Distribution of sensitive parameters.

Criteria No. sensitive parameters
Violate the isolation of file systems | 33,951
Violate the isolation of networking | 43,278

Break the separation of processes 56
Escalate runtime privileges 4,009
Total 81,294

5 Malicious Images

As reported in [8], high-profile attacks seriously damaged the profit of users.
These attacks originate from the launching of malicious images such as elec-
tronic coin miners. In order to detect malicious images, manual security analysis
on each software contained in a Docker image yields accurate results, which is
however extremely slow and does not scale well for large and heterogeneous soft-
ware packages. On the other hand, a dynamic analysis also becomes impractical
since it is even more time-consuming to trace system calls, APIs, and network
for millions of Docker images. Compared to the two methods above, a static
analysis seems to be a potential solution to overcome these challenges. However,
the number of software packages contained in each image varies from hundreds
to thousands. It is still challenging to analyze billions of software packages using
static analysis. Fortunately, we found that a majority of software packages in
Docker images are redundant [31] which thus can be filtered out for efficient
analysis. However, it is unclear which software deserves attention from security
researchers. As stated in Sect. 2.1, we propose to focus on the executed programs.
As long as a malicious executed program is detected, the corresponding image
can be confirmed as malicious. Considering that our research goal is to char-
acterize malware for measurement purposes instead of actually detecting them
in practice, we focus on the executed programs only rather than other software
for discovering malicious images in this study. We will discuss how to further
improve the detection in Sect. 8.

5.1 Malicious Executed Programs

Detecting Malicious Executed Programs. By leveraging the parser pro-
posed in Sect. 3.2, we can obtain all the executed programs in the tested images.
We observe that the file types of the extracted executed programs could be JAR
written by JAVA, ELF implemented by C++4, Shell Script, etc. It is quite chal-
lenging to analyze many kinds of software at the same time, since generating
and confirming fingerprints for malware are both difficult and time-consuming.
Therefore, we turn to online malware analysis tools for help. In particular, Virus-
Total [11] is a highly comprehensive malware detection platform that incorpo-
rates various signature-based and anomaly-based detection methods employed

Understanding the Security Risks of Docker Hub 267

by over 50 anti-virus (AV) companies such as Kaspersky, Symantec. Therefore,
it can detect various kinds of malware, including Trojan, Backdoor, and Bitcoin-
Miner. As such, we employ VirusTotal to perform a primary screening. However,
prior works have shown that VirusTotal may falsely label a benign program as
malicious [14,22,29]. To migrate false positives, most of the prior works con-
sider a program malicious if at least a threshold of AV companies detects it.
In fact, there is no agreement in the threshold value. Existing detection has
chosen two [14], four [22], or five [29] as the threshold. In this paper, to more
precisely detect malicious programs, we consider a program as malicious only
if at least five of the AV companies detect it. This procedure ensures that the
tested programs are (almost) correctly split into benign and malicious ones.

The results of the primary screening only report the type of each malware
provided by anti-virus companies. It is hard to demonstrate the accuracy of pri-
mary screening results, let along understanding the behavior of each malware.
Therefore, after we obtain a list of potentially malicious files from the primary
screening, a second screening is necessary to confirm the detection results and
analyze the behavior of these files. Specifically, we dynamically run the poten-
tially malicious files in a container and collect the logs of system call, network,
and so on to expose the security violations of such files.

Finally, we implement a framework to finish the above pipeline. First, our
framework utilizes our parser to locate and extract executed programs from
the Docker images. Second, it leverages ViusTotal API to detect potentially
malicious files. Third, we implement a container which contains a variety of tools
such as strace and tcpdump for security analysis. Our framework leverages this
container as a sandbox for automatically running and tracing the potentially
malicious files to generate informative system logs. Since most benign images
are filtered out by the primary screening, system logs are generated for only a
few potentially malicious images. This framework greatly saves manual efforts
and helps detect malicious images rapidly.

5.2 Distribution of Malicious Images

We first study the executed programs in the latest images in 147 official reposito-
ries, and we find that there are no malicious executed programs in these official
images. Then, to facilitate in-depth analyses on community images, we extract
the following subsets from the collected dataset for studying the executed pro-
grams. 1) The latest images in the top 10,000 community repositories ranked
by popularity. 2) According to the popularity ranking, we divide the rest com-
munity repositories into 100 groups and randomly select 100 latest images from
each group. In this way, we obtain 10,000 community images.

Results. On average, our parser proposed in Sect. 3.2 takes 5 and 0.15 seconds
in analyzing one image and one file, respectively. The parser locates 693,757
executed programs from the tested images. After deduplication, we get 36,584
unique executed programs, in which there exist 13 malicious programs identified
by our framework. The 13 malicious programs appear in 17 images. Moreover, we

268 P. Liu et al.

notice that all the malicious programs are entry-files in these malicious images.
This observation indicates that it is common for malicious images to perform
attacks by directly utilizing a malicious entry-files, instead of subsequently trig-
gered files.

Intuitively, the developer of a malicious image may release other malicious
images on Docker Hub. Therefore, we propose to check the images that are
related to malicious images. By leveraging the metadata collected in Sect. 3.2,
once we detect a malicious image, we can investigate two kinds of related images:
(1) the latest 10 images in the same repository and (2) the latest images in
the most popular 10 repositories created by the same developer. We obtain 48
and 84 of these two types of related images respectively, in which there are 27
images contain the same malicious file found in the previously-detected mali-
cious images. After analyzing all the related images by leveraging the framework
developed in Sect. 5.1, we further obtain 186 new executed programs, in which
there are 20 new malicious programs in 25 images. This insightful finding indi-
cates that heuristic approaches, such as analyzing related images proposed in
this work, are helpful in discovering malicious images and programs effectively.
We hope that the malicious images and insights discovered in this paper can
serve as an indicator for future works. The case study of the detected malicious
images is deferred to Appendix A.3.

6 CVE Vulnerabilities

In this section, we evaluate the vulnerabilities in Docker images which are iden-
tified through Common Vulnerabilities and Exposures (CVE) IDs because the
information of CVEs is public, expansive, detailed, and well-formed [34]. First,
we leverage Anchore [2] to perform vulnerability detection for each image and
study the distribution of the discovered vulnerabilities in Docker images. The
results demonstrate that both official and community images suffer from seri-
ous software vulnerabilities. More analysis about vulnerabilities in images are
deferred to Appendix A.4. Then, we investigate the extra window of vulnerabil-
ity in Docker images.

Defining of the Extra Window of Vulnerability. To understand the time-
line of the life cycle of a vulnerability in Docker images, accurately determining
the discovery and patch time of a vulnerability, the release and update time
of an image is vital. However, several challenges exist in determining different
times. For instance, a vulnerability may be patched multiple times. In addition,
different vendors might release different discovery times. Hence, we propose to
first define these times motivated by existing research [34].

— Discovery-time is the earliest reported date of a software vulnerability being
discovered and recognized to pose a security risk to the public.

— Patch-time is the latest reported date that the vendor, or the originator of
the software releases a fix, workaround, or a patch that provides protection
against the exploitation of the vulnerability. If the vulnerability is fixed by

Understanding the Security Risks of Docker Hub 269

the upgrade of the software and the patch is not publicly available, we record
the date of the upgrade of the software instead.

— For a vulnerability, release-time is the date that the developer releases an
image that first brings in this vulnerability.

— For a vulnerability, upgrade-time is the date that the developer releases a new
edition of the image, which fixes this vulnerability contained in the previous
edition.

Suppose that a wvul-
nerability of software S
is discovered at T,;. Then
after a period of time,

<= = »Window of Vulnerability in Software
< - - < Window of Vulnerability in Image

<+—— Extra Window of Vulnerability in Image

Discovery-time Patch-time
the developer of S fixes - - _i_ ______) >
. +1: - Td Tr Tp Tu 5
this vulnerability at 7;. Time T S o >
Release-time Upgrade-time

Image [first brings in
this vulnerability at 7.

Discovery-time Patch-time

I tokes extrn time for e 1 1"~ "R———— i
the developer of I to Release-time Upgrade-time
fix the vulnerability and Discovery-time Patch-time

update this image at Ty, 40 ¢ N ol | T,
The developer of Image ! Release-time Upgrade-time

I is supposed to immedi-

ately fix the vulnerability ~Fig. 4. Extra window of vulnerabilities in Docker images.
once the patch is publicly

available. However, it usually takes a long time before developers actually fix the
vulnerability in an image. Therefore, we define W, the extra window of vulner-
ability in images, to measure how long it takes from the earliest time the vul-
nerability could be fixed to the time the vulnerability is actually fixed. Figure 4
presents three different cases of the extra window of vulnerability. In the first
two cases, W, is spreading from T, to T),. In the last case, even though the patch
of a vulnerability is available, image I still brings in the vulnerability, so the W,
starts at T, and ends at T,. For all the cases, there is always an extra time
window of vulnerability in image I before the developer updates I.

Obtaining Different Times. We choose the latest five editions of the 15 most
popular images and randomly sample other 15 Docker images to investigate the
extra window of vulnerabilities in images. By leveraging Anchore [2]|, we obtain
5,608 CVEs from these 30 images. After removing duplication, 3,023 CVEs remain,
from which we randomly sample 1,000 CVEs for analysis. Then, we implement a
tool to automatically collect discovery-, patch-time, and image release-, update-
time for each CVE by leveraging the public information released on NVD Met-
rics [12]. We aim to obtain all the vital time of 1,000 CVEs from public information.
However, the discovery- and patch-time of vulnerabilities are not always released
in public. Therefore, we only obtain the complete information of vital time of 334
CVEs. It is worth noting that in some complex cases (e.g., there are multiple dis-
covery-time for a CVE), we manually collect and confirm the complete information
by reviewing the external references associated with CVEs.

270 P. Liu et al.

Results. After analyzing the vital time of the 334 CVEs, we observe that it takes
181 days on average for common software to fix a vulnerability. However, the
extra window of vulnerabilities in images is 422 days on average while the longest
extra window of vulnerabilities could be up to 1,685 days, which allows sufficient
time for attackers to craft corresponding exploitations of the vulnerabilities in
Docker images.

7 Mitigating Docker Threats

In this section, we propose several possible methods to mitigate the threats
uncovered in this paper.

Sensitive Parameters. To mitigate attacks abusing sensitive parameters, one
possible method is to design a framework which automatically identifies sen-
sitive parameters and alerts users on the webpages of repository descriptions
on Docker Hub. First of all, it is necessary to maintain a comprehensive list of
sensitive parameters by manual analysis. After that, sensitive parameters in the
descriptions of Docker images can be identified easily by leveraging string match-
ing. Docker Hub should be responsible for displaying the detection results in the
image description webpage and prompting the users about the possible risks of
the parameters in run-commands. The above framework can be implemented as
a backend of the website of Docker Hub or a browser plug-in. Additionally, run-
time alerts, as adopted by 10S and existing techniques [33,38], can warn users of
potential risks before executing a run-command with sensitive parameters, which
will be an effective mechanism to mitigate the abusing of sensitive parameters.

Malicious Images. To detect malicious images, traditional static and dynamic
analysis, e.g., signature-based method, system call tracing can be certainly help-
ful. However, many challenges do exist. For example, if the redundant files of an
image cannot be removed accurately, it will be extraordinarily time-consuming
to analyze all the files in an image by traditional methods. The framework pro-
posed in Sect. 5.1 can be utilized to solve this problem. Furthermore, heuristic
approaches, such as analyzing related images proposed in Sect. 5.2, could also
be beneficial in discovering malicious images.

Vulnerabilities. Motivated by previous research [18], we believe that auto-
matic updating is an effective way to mitigate the security risks from vulnerable
images. However, software update becomes challenging in Docker. Because the
dependencies among a large quantity of software are complicated and arbitrary
update may cause a broken image. We propose multiple possible solutions to
automated updating for vulnerable software packages. First, various categories
of existing tools such as Anchore [2] can be employed to obtain vulnerability
description information including the CVE ID of the vulnerability, the edition of
the corresponding vulnerable software packages that bring in the vulnerability,
the edition of software packages that repairs this vulnerability. Second, package
management tools, e.g., apt, yum, can be helpful to resolve the dependency rela-
tionship among software packages. After we obtain the above information, we
may safely update vulnerable software and the related software.

Understanding the Security Risks of Docker Hub 271

8 Discussion

In this section, we discuss the limitations of our approach and propose several
directions for future works.

Automatically Identifying Malicious Parameters. We perform the first
analysis on sensitive parameters and show that these parameters can lead to
disastrous security consequences in Sect.4. However, the sensitive parameters
we discuss in this paper are recognized by manual analysis. Obviously, there
are other sensitive parameters in the field that still need to be discovered in
the future. Additionally, even though we discover many sensitive parameters on
Docker Hub, it is hard to identify which parameters are published for malicious
attempts automatically. Hence, one future direction to improve our work is to
automatically identify malicious parameters in repository descriptions. One pos-
sible method is gathering images with the similar functionalities and employ sta-
tistical analysis to detect the deviating uses of sensitive parameters—deviations
are likely suspicious cases, given that most images are legitimate.

Improving Accuracy for Detecting Malicious Images. In Sect. 5, we nar-
row down the analysis of malicious images to the executed programs. Although
this method achieves the goal of discovering security risks in Docker Hub, it
still has shortcomings for detecting malicious images accurately. For example,
malware detection is a well-known arms-race issue [17]. First of all, VirusTotal,
the detector we used in the primary screening may miss malware. Additionally,
we cannot detect malicious images that perform attacks with other files rather
than their executed programs. For example, our approach cannot detect images
that download malware during execution, since our parser performs static anal-
ysis. Furthermore, after we obtain the system log of potential malicious images,
we conduct manual analysis on these log files. Motivated by [21], we plan to
include more automatic techniques to parse and analyzing logs as future work.
Moreover, we plan to analyze more images in the future.

Polymorphic Malware. Malware can change their behaviors according to dif-
ferent attack scenarios and environments [17,25]. Since our research goal is to
characterize malware for measurement purposes instead of actually detecting
them in practice, we employ existing techniques to find and analyze malware.
However, it is valuable to understand the unique behaviors of Docker Malware.
For instance, Docker has new fingerprints for malware to detect its running envi-
ronments. How to emulate the Docker fingerprints to expose malicious behaviors
can be an interesting future topic.

9 Related Work

Vulnerabilities in Docker Images. Many prior works focus on the vulnera-
bilities in Docker images [16,23,27,36,39]. For instance, Shu et al. proposed the
Docker Image Vulnerability Analysis (DIVA) framework to automatically dis-
cover, download, and analyze Docker images for security vulnerabilities [36].

272 P. Liu et al.

However, these studies only investigate the distribution of vulnerabilities in
Docker images, while our work uniquely conducts in-depth analysis on new risks
brought by image vulnerabilities, such as the extra window of vulnerability.

Security Reinforcement and Defense. Several security mechanisms have
been proposed to ensure the safety of Docker containers [26,35,37]. For instance,
Shalev et al. proposed WatchIT, a strategy that constrains I'T personnel’s view
of the system and monitors the actions of containers for anomaly detection [35].
There also exist other Docker security works that focus on defenses for specific
attacks [19,24]. For instance, Gao et al. discuss the root causes of the containers’
information leakage and propose a two-stage defense approach [19]. However,
these studies are limited to specific attack scenarios, which are not sufficient for
a complete understanding of the security state of Docker ecosystems as studied
in this work.

Registry Security. Researchers have conducted a variety of works on analyzing
the code quality and security in third-party code store and application registries,
such as GitHub and App Store [15,20,28,30,32]. For instance, Bugiel et al. intro-
duced the security issues of VM image repository [15]. Duc et al. investigated
Google Play and the relationship between the end-user reviews and the security
changes in apps [30]. However, Docker image registries such as Docker Hub have
not been fully investigated before. This work is the first attempt to fill the gap
according to our best knowledge.

10 Conclusion

In this paper, we perform the first comprehensive study of Docker Hub ecosys-
tem. We identified three major sources for the new security risks in Docker
hub. We collected a large-scale dataset containing both images and the associ-
ated meta-information. This dataset allows us to discover novel security risks in
Docker Hub, including the risks of sensitive parameters in repository descrip-
tions, malicious images, and the failure of fixing vulnerabilities in time. We
developed new attacks to demonstrate the security issues, such as leaking user
files and the host display. As the first systematic investigation on this topic, the
insights presented in this paper are of great significance to understanding the
state of Docker Hub security. Furthermore, our results make a call for actions to
improve the security of the Docker ecosystem in the future. We believe that the
dataset and the findings of this paper can serve as a key enabler for improvements
of the security of Docker Hub.

Acknowledgements. This work was partly supported by the Zhejiang Provin-
cial Natural Science Foundation for Distinguished Young Scholars under No.
LR19F020003, the National Key Research and Development Program of China under
No. 2018YFB0804102, NSFC under No. 61772466, U1936215, and U1836202, the Zhe-
jiang Provincial Key R&D Program under No. 2019C01055, and the Ant Financial
Research Funding.

Understanding the Security Risks of Docker Hub 273

A Appendix

A.1 User Study on Sensitive Parameters

We design an online questionnaire that contains questions including “Do you
try to fully understand every parameter of the run-commands provided on the
Docker Hub website before running those commands?”, “Do you make a security
analysis of the compose.yml file before running the image?”, etc. Our question-
naire was sent to our colleagues and classmates, and further spread by them. In
order to ensure the authenticity and objectivity of the investigation results, we
did not tell any respondents the purpose of this survey. We plan to conduct the
user study in the official community of Docker Hub in the future.

Finally, we collected 106 feedback offered by 106 users from various cities
in different countries. All of them have benefited from Docker Hub, i.e., they
have experiences in using images from Docker Hub. Besides, they are from a
broad range from both academia and industry fields, including students and
researchers from various universities, software developers and DevOps engineers
from different companies, etc.

As described in Sect. 4.2, the results of our user study show that 97% of
users only care about if they can successfully run the image while ignoring how
the images run, not to mention the sensitivity parameters in run-command and
docker-compose.yml file. Even for 68 users who have a background in security
research, only 10% of them indicate that they prefer to figure out the meaning
of the parameters in run-commands.

A.2 Novel Attacks Exploiting Sensitive Parameters

Obtaining the Display of the Host. --privileged is one of the most powerful
parameters provided by Docker, which may pose a serious threat to users. When
the operator uses command --privileged, the container will gain access to all the
devices on the host. Under this scenario, the container can do almost anything
with no restriction, which is extremely dangerous to the security of users. More
specifically, --privileged allows a container to mount a partition on the host.
By taking a step further, the attacker can access all the user files stored on
this partition. In addition to accessing user files, we design an attack to obtain
the display of a user’s desktop. In fact, with --privileged, a one-line code,
cp/dev/fb0® user_desktop.txt, is sufficient for attackers to access user display
data. Furthermore, by leveraging simple image processing software [7], attackers
can see the user’s desktop as if they were sitting in front of the user’s monitor.

Spying the Process Information on the Host. --pid is a parameter related
to namespaces. Providing --pid=host allows a container to share the host’s PID
namespace. In this case, if the container is under the control of an attacker,
all the programs running on the user’s host will become visible to the attacker
inside the container. Then, the attacker can utilize these exposed information
such as the PID, the owner, the path of the corresponding executable file and
the execution parameters of the programs, to conduct effective attacks.

274 P. Liu et al.

A.3 Case Study of Malicious Images

We manually conduct analysis on detected malicious images. For instance, the
image mitradomining/ffmpeg on Docker Hub is detected as malicious by our
framework. The entry-file of this image is /opt/ffmpeg [7]. According to the name
and entry-file of the image, the functionality of this image should be image and
video processing. However, our framework detects that the real functionality
of the entry-file is mining Bit-coins. By leveraging the syscall log reported by
our framework, we determine that the real identity of this image is a Bit-coin
miner. Thus, once users run the image, their machines will become slaves for
cryptomining.

A.4 Distribution of Vulnerabilities

We investigate the distribu-
tion of wvulnerabilities in the

Critical Negligible Critical Negligible . .
2 2038 - 1573316 latest version of all official
0.01% 0.05% 8.15%))
Unknown | v Unknown Medium 1Mages. First, we observe that
as8% “M 2% Hoh 830 M ‘1357"_’38307‘ the latest official images con-
High ~— Low High ~ Low tain 30,000 CVE vulnerabil-
1704 2808 334054 654868
538% 8.87% 81% 15.88% ities. Figure 5(a) categorizes

(a) Official images. (b) Community images. these CVE vulnerabilities into 6
groups according to the sever-
Fig.5. Vulnerabilities existing in the latest ity levels assessed by the lat-
images. est CVSSv3 scoring system [12].
Although only 6% of vulnerabil-
ities are highly/critically severe, they exist in almost 30% of the latest official
images. Furthermore, we conduct a similar analysis on the latest images in the
10,000 most popular community repositories. As shown in Fig.5(b), the ratios
of vulnerabilities with medium and high severity increase to over 37% and 8%,
respectively, which are higher than those of official images. In addition, it is quite
alarming that more than 64% of community images are affected by highly/crit-
ically severe vulnerabilities such as the denial of service and memory overflow.
These results demonstrate that both official and community images suffer from
serious software vulnerabilities. Additionally, community images contain more
vulnerabilities with higher severity. Hence, we propose that software vulnerabil-
ity is an urgent problem which seriously affects the security of Docker images.

References

1. Amazon Elastic Container Servicen, August 2019. https://aws.amazon.com/

getting-started /tutorials /deploy-docker-containers

Anchore, August 2019., https://anchore.com/engine/

3. API to get Top Docker Hub images, August 2019. https://stackoverflow.com/
questions /38070798 /where-is-the-new-docker-hub-api-documentation

4. Docker, August 2019. https://www.docker.com/resources/what-container

o

© N

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Understanding the Security Risks of Docker Hub 275

Docker Hub Documents, August 2019. https://docs.docker.com/glossary/?
term=Docker%20Hub

Docker Security Best-Practices, August 2019. https://dev.to/petermbenjamin/
docker-security-best-practices-45ih

FFmpeg, August 2019. http://ffmpeg.org

Malicious Docker Containers Earn Cryptomining Criminals $90K, August 2019.
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-
modern-containerization-trend-is-exploited-by-attackers

Running Docker in Production, August 2019. https://ghost.kontena.io/docker-in-
production-good-bad-ugly

strings(1) - Linux man page, August 2019. https://linux.die.net/man/1/strings
Virustotal Api, August 2019. https://pypi.org/project/virustotal-api/
Vulnerability Metrics, August 2019. https://nvd.nist.gov/vuln-metrics/cvss
Understanding the Security Risks of Docker Hub, July 2020. https://github.com/
decentlL/Understanding-the-Security- Risks-of-Docker-Hub

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.:
DREBIN: effective and explainable detection of Android malware in your pocket.
In: NDSS, vol. 14, pp. 23-26 (2014)

Bugiel, S., Niirnberger, S., Poppelmann, T., Sadeghi, A.R., Schneider, T.: Amazo-
nia: when elasticity snaps back. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security, pp. 389-400. ACM (2011)

Combe, T., Martin, A., Di Pietro, R.: To docker or not to docker: a security
perspective. IEEE Cloud Comput. 3(5), 54-62 (2016)

Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D.: Understanding Linux mal-
ware. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 161-175. IEEE
(2018)

Duan, R., et al.: Automating patching of vulnerable open-source software versions
in application binaries. In: NDSS (2019)

Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D., Wang, H.: ContainerLeaks: emerg-
ing security threats of information leakages in container clouds. In: 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 237-248. IEEE (2017)

Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 1025-1035. ACM (2014)

He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931-944
(2017)

Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authen-
ticode code signing. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 465-478 (2015)

Tak, B., Kim, H., Suneja, S., Isci, C., Kudva, P.: Security analysis of container
images using cloud analytics framework. In: Jin, H., Wang, Q., Zhang, L.-J. (eds.)
ICWS 2018. LNCS, vol. 10966, pp. 116-133. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94289-6_8

Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., Zhou, QQ.: A measurement study on
Linux container security: attacks and countermeasures. In: Proceedings of the 34th
Annual Computer Security Applications Conference, pp. 418-429. ACM (2018)
Liu, B., Zhou, W., Gao, L., Zhou, H., Luan, T.H., Wen, S.: Malware propagations
in wireless ad hoc networks. IEEE Trans. Dependable Secure Comput. 15(6), 1016—
1026 (2016)

276

26.

27.

28.

29.

30.

31.

32.

33.

34.

39.

36.

37.

38.

39.

P. Liu et al.

Loukidis-Andreou, F., Giannakopoulos, I., Doka, K., Koziris, N.: Docker-Sec: a
fully automated container security enhancement mechanism. In: 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS), pp. 1561—
1564. IEEE (2018)

Martin, A., Raponi, S., Combe, T., Di Pietro, R.: Docker ecosystem-vulnerability
analysis. Comput. Commun. 122, 30-43 (2018)

Martin, W., Sarro, F., Yue, J., Zhang, Y., Harman, M.: A survey of app store
analysis for software engineering. IEEE Trans. Softw. Eng. 43(9), 817-847 (2017)
Miller, B., et al.: Reviewer integration and performance measurement for malware
detection. In: Caballero, J., Zurutuza, U., Rodriguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 122-141. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1_7

Nguyen, D., Derr, E., Backes, M., Bugiel, S.: Short text, large effect: measuring
the impact of user reviews on Android app security and privacy. In: 2019 TEEE
Symposium on Security and Privacy (SP), pp. 155-169. IEEE (2019)

Rastogi, V., Davidson, D., Carli, L.D., Jha, S., Mcdaniel, P.: Cimplifier: automat-
ically debloating containers. In: Joint Meeting on Foundations of Software Engi-
neering (2017)

Ray, B., Posnett, D., Filkov, V., Devanbu, P.: A large scale study of programming
languages and code quality in GitHub. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 155-165.
ACM (2014)

Ringer, T., Grossman, D., Roesner, F.: Audacious: user-driven access control with
unmodified operating systems. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 204-216. ACM (2016)
Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of soft-
ware vulnerability life cycles. In: 2012 34th International Conference on Software
Engineering (ICSE), pp. 771-781. IEEE (2012)

Shalev, N., Keidar, 1., Weinsberg, Y., Moatti, Y., Ben-Yehuda, E.: WatchIT: who
watches your I'T guy? In: Proceedings of the 26th Symposium on Operating Sys-
tems Principles, pp. 515-530. ACM (2017)

Shu, R., Gu, X., Enck, W.: A study of security vulnerabilities on docker hub. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pp. 269-280. ACM (2017)

Sun, Y., Safford, D., Zohar, M., Pendarakis, D., Gu, Z., Jaeger, T.: Security names-
pace: making Linux security frameworks available to containers. In: 27th USENIX
Security Symposium (USENIX Security 2018), pp. 1423-1439 (2018)

Wijesekera, P., et al.: The feasibility of dynamically granted permissions: aligning
mobile privacy with user preferences. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 1077-1093. IEEE (2017)

Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation
between outdated docker containers, severity vulnerabilities, and bugs, pp. 491-501
(2019)

